Organization(s): Duke University

Title: Flow Visualization for Microflumes: Integrated Analysis and CAD

Duration of Effort: July 1998 - February 2001

Principal Investigator(s): Hugh C. Crenshaw, David Needham, and Edward Shaughnessy

Phone: (919) 660-7380 / Email: crenshaw@duke.edu

Web: www.zoology.duke.edu/crenshaw

Objective

(1) Develop new instruments to:

- measure the 3D geometry of finished devices
- visualize flow inside devices
- measure the rate and degree of mixing of fluids
- measure rates of reaction in mixing flows
- (2) Validate computational fluid dynamic techniques:
 - creeping flows
 - interactions between solid surfaces and liquids
- (3) Techniques for engineering surfaces
 - interior surfaces of channels/devices
 - particles

Progress/Results

- (1) Suite if virtual instruments (software + COTS hardware), FlowVIs, released as freeware:
 - (a) Particle Image Velocimetry (PIV)
 - (i) 1-camera PIV for slow flows
 - (ii) 2-camera PIV for broader range of flows, including faster flows
 - (c) Ouantitative fluorescence
 - (d) Particle tracking
 - (e) Particle Streaklines
 - (f) Interior 3D geometry measurement
- (2) Validate computational fluid dynamic techniques:
 - (a) Large number of channel geometries simulated with FiDAP and CFD/ACE+
 - (b) Both packages compare well with PIV results thus far
- (3) Techniques for engineering surfaces:
 - (a) Techniques developed for engineering surfaces of flat surfaces
 - (b) Novel particles developed (liposomes)

Status

- (1) Instruments we are working on:
 - (a) Instantaneous measures of shear rates in flows via fluorescence
 - (b) Instantaneous measures of temperature in flows via fluorescence
- (2) Continuing validation of CFD with more geometries
- (3) Attempting techniques for validation of interior surface chemistry

MTO Composite CAD

Wireframe of Plenum - CFD/ACE+

Velocity profiles at transition from plenum to channel – PIV

Velocity Field at transition from plenum to channel – CFD/ACE+

Velocity Field at transition from plenum to channel – PIV

Re = 0.03, maximum velocity = $300 \,\mu\text{m/s}$ Interval separating image pairs = 16.7ms Exposure = $2 \,\text{ms}$ Ensemble average of vector fields from $40 \,\text{image}$ pairs